If it's not what You are looking for type in the equation solver your own equation and let us solve it.
26=13v^2
We move all terms to the left:
26-(13v^2)=0
a = -13; b = 0; c = +26;
Δ = b2-4ac
Δ = 02-4·(-13)·26
Δ = 1352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1352}=\sqrt{676*2}=\sqrt{676}*\sqrt{2}=26\sqrt{2}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-26\sqrt{2}}{2*-13}=\frac{0-26\sqrt{2}}{-26} =-\frac{26\sqrt{2}}{-26} =-\frac{\sqrt{2}}{-1} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+26\sqrt{2}}{2*-13}=\frac{0+26\sqrt{2}}{-26} =\frac{26\sqrt{2}}{-26} =\frac{\sqrt{2}}{-1} $
| 13g=12g+18 | | 18-12b+9b=54 | | d=80/3.14 | | 10.61=g/2-(-6.7 | | 4w-7-2w+13=-26 | | 18+x=100 | | 2(5x+4)=4(11+x) | | 5(+-1)=2(5+t) | | 5x-1=-5+1 | | 4(9/4-12)=(1/4y-4)4 | | b-40/180=690 | | 6/9=w/11 | | c=80/3.14 | | a=52/13+7 | | 6b-7+90+61=180 | | 18x-1+15x+20=135 | | -13.7=v/7-2.5 | | 3x+6=19-4(x-1)+7x | | 3(5x+3)-6x=6(2x+3) | | 3y-y=-4 | | 2q+-35=-87 | | -4(m-3)=6 | | 2+8y=11y+12 | | 9(5+t)-7(t+3)=0 | | b-180/40=690 | | 18x-1+15x+20=170 | | -4+5(x+8)=-6(x-2)+7x | | x²+2x-72=0 | | 5(1+3p)-2=-72 | | 18x-1+15x+20=175 | | 2(5x+9)=-19+17 | | 3x+4=2x6+6 |